CYCLOHEXANE-DECALIN

The most striking system measured was cyclohexane + decalin (Figure 2). The heats of mixing changed sign at high cyclohexane concentrations. Some measurements were made at 25° C. with decalin having cis-decalin concentrations of 10%, 64%, and 99%. The results were consistent; the heats of mixing changed signs at cyclohexane concentrations of 75, 81, and 88 mole per cent respectively. However, the calorimeter used is not well suited for these measurements. The very small heats of mixing (maximum 42 joules/mole) and the great differences in the vapor pressures of the components make the relative corrections for the vapor space undesirably large.

Figure 2. Heats of mixing of cyclohexane + decalin

ACKNOWLEDGMENT

The author wishes to express his appreciation to W.H. Husing and J.M. Oort, who were largely responsible for the construction of the calorimeter and many of its design features, to R.U. Bonnar for his valuable assistance with the computer programs, and especially to Otto Redlich under whose supervision this work was performed.

NOMENCLATURE

- $A = H^{M} / V \phi_1 \phi_2$
- A_{j} = coefficients in Equation 2
- B $= H^{M}/x_{1}x_{2}$ B_i
- = coefficients in Equation 1 Н^{м́} =
- excess heat content in j./mole mole fraction of component i
- \dot{V} Volume of one mole of the components of the mixture = in ml.
- V_{\cdot} molar volume of component i in ml. =
- = volume fraction of component *i* φ1

LITERATURE CITED

- (1) American Petroleum Institute Project 44, "Selected Values of Physical and Thermodynamic Properties of Hydrocarbons and Relative Compounds," Carnegie Press, Pittsburgh, Pa.,
- (2)Larkin, J.A., McGlashan, M.L., J. Chem. Soc. 1961, p. 3425.
- (3)
- Mrazek, R.V., Van Ness, H.C., A.I.Ch.E.J. 5, 190 (1961). McGlashan, M.L., in "Experimental Thermochemistry," Vol. II, Chap. 15, Interscience Publishers, N. Y., 1962. (4)
- McGlashan, M.L., Morcom, K.W., Trans. Faraday Soc. 57, (5)907 (1961).
- McGlashan, M.L., Morcom, K.W., Williamson, A.G., Ibid., (6)601 (1961).
- Timmermans, J., "Physico-Chemical Constants of Pure (7)Organic Compounds," p. 227, Elsevier, Amsterdam, Netherlands, 1950.

RECEIVED for review December 23, 1963. Accepted February 3, 1964.

Thermodynamic Properties of Pu²³⁹ as an Ideal Gas

ARNOLD BENTON¹

Argonne National Laboratory, Argonne, Illinois

 ${
m T}_{
m HERE}$ IS INSUFFICIENT published information on the plutonium spectrum to permit an accurate calculation of the thermodynamic properties of this element as an ideal monatomic gas. The values presented in this paper can be considered only as estimates because they are based on only the 32 levels listed in Table II. The 9179.05 cm.⁻¹ and 10,238.24 cm.⁻¹ levels were supplied by Dr. Jean Blaise in a private communication; the others

¹ Permanent address: The University of Akron, Akron, Ohio.

are from Tableau XXIII of Gerstenkorn (1), the only published values known to the author at the time these calculations were performed.

The highest energy level in Table II is 27,651.22 cm.⁻¹ There are certainly large numbers of higher levels to be expected and there already exists evidence of additional lower levels which have not been published because of some unresolved questions. These factors make it difficult to select an upper temperature at which to terminate the calculations. The paucity of spectroscopic data does

Table 1. Thermodynamic Properties of Pu ²³⁹								
	Atomic weight H _{298.15} – H ₈ S _{298.15}	= 237.0 = 1481.1 = 42.31	6 gram mole 75 cal. mole 96 cal. deg.~	-1 1 1 mole ⁻¹				
		С	al. Deg. ⁻¹ Mol	le ⁻¹				
			-	$F_{T}^{\circ} - H_{298.15}^{\circ}$				
<i>T</i> , ° K.	$H_T^{h} - H_{298.15}^{h}$ Cal. Mole ⁻¹	CP	S7-S288.15					
298.15	0.00	4.9845	0.0000	42.3196				
300.00	9.22	4.9854	0.0308	42.3196				
400.00	512.40	5.1037	1.4776	42.5161				
600.00	1,030.80	5,8929	2.0443	42.0920				
700.00	2,202,52	6.3185	4.5984	43.7715				
800.00	2.859.47	6.8172	5.4749	44.2201				
900.00	3,564.80	7.2819	6.3051	44.6638				
1000.00	4,314.21	7.6976	7.0943	45.0996				
1100.00	5,102.59	8.0618	7.8454	45.5263				
1200.00	5,924.98	8.3784	8.5608	45.9429				
1400.00	7 654 91	8 8887	9.2420	40.3451				
1500.00	8,553,44	9.0903	10.5129	47.1302				
1600.00	9,471.18	9.2593	11.1052	47.5052				
1700.00	10,404.25	9.3969	11.6708	47.8702				
1800.00	11,349.54	9.5040	12.2111	48.2253				
1900.00	12,304.06	9.5816	12.7271	48.5709				
2000.00	13,264.94	9.6313	13.2200	48.9071				
2200.00	14,229.40	9.6552	14 1398	49.5525				
2300.00	16,159,80	9.6345	14.5686	49.8622				
2400.00	17,121.47	9.5961	14.9779	50.1635				
2500.00	18,078.52	9.5428	15.3686	50.4568				
2600.00	19.029.63	9.4777	15.7417	50.7421				
2700.00	19,973.76	9.4036	16.0980	51.0198				
2800.00	20,910.13	9.3229	16,4360	51.2902				
3000.00	22,757,64	9.1506	17.0759	51.8096				
3100.00	23,668,29	9.0625	17.3745	52.0591				
3200.00	24,570.15	8.9749	17.6609	52.3022				
3300.00	25,463.32	8.8889	17.9357	52.5391				
3400.00	26,348.02	8.8054	18.1998	52.7700				
3500.00	27,224.50	8.7248	18.4039	52.9950 52.9145				
3700.00	28,053.10	8 5743	18 9345	53 4286				
3800.00	29,808.08	8.5046	19.1623	53.6376				
3900.00	30,655.22	8.4389	19.3823	53.8416				
4000.00	31,495.98	8.3769	19.5952	54.0407				
4100.00	32,330.73	8.3187	19.8013	54.2353				
4200.00	33,159.84	8.2640	20.0011	54.4255				
4300.00	33,983.69	8.2127 8.1646	20.1949	04.0113 54 7931				
4500.00	35,616,66	8,1194	20.5662	54.9709				
4600.00	36,426.46	8.0769	20.7442	55.1449				
4700.00	37,232.13	8.0370	20.9174	55.3152				
4800 .00	38,033.93	7.9993	21.0862	55.4820				
4900.00	38,832.06	7.9637	21.2508	55.6454				
5000.00	39,626.72	7.9299	21.4113	55.8056				

not justify going to 5000° K. However, values for the higher temperatures are included to serve the needs of those people who in the absence of available numbers would be compelled to make estimates of their own. For those readers who may be interested in comparing these results with estimates based on other than spectroscopic data, attention is called to the report by Mulford (2), which covers the temperature range 298° K. to 2500° K.

which covers the temperature range 298°K. to 2500°K. A word about significant figures. The number retained at the higher temperatues is not justified by the accuracy.

Table II. Energ	$_{ m IV}$ Levels of Pu 239	Used in the	Calculations
-----------------	----------------------------------	-------------	--------------

Level (Cm. $^{-1}$)	J	Level (Cm. $^{-1}$)	J
0.0	0	20,385.4	2
2,203.6	1	20,525.75	1
4,299.6	2	21,227.95	4
6,144.3	3	21,420.95	3
7,774.4	4	23,416.57	2
9,179.05	5	23,766.2	1
10,238.24	6	24,158.75	2
13,517.5	2	24,653,30	1
15,406.8	1	24,751.43	1
15.865.8	1	24.848.73	$\overline{2}$
16.734.1	2	25,397,28	1
17.500.88	ī	25.617.55	$\overline{2}$
17.615.35	$\overline{2}$	25,660,90	ī
18.346.9	$\overline{2}$	25,828,08	4
19,426.2	3	26,633,40	1
_ ,	-	27 536 10	3
		27 651 22	2
		21,001.22	-

However, all the figures printed out by the computer are presented because it is difficult to know or estimate the accuracy when some of the low lying energy levels may be missing in the input data. Furthermore, retaining all the digits will facilitate comparing these numbers with improved results which may become available in the future.

The calculations were performed on an IBM 704 computer using the well known methods of statistical mechanics to be found in many textbooks [for example, Rossini (3), or Mayer and Mayer (4)]. The computer printed out the results reproduced in Table I. The atomic weight of Pu²³⁹ was obtained from Everling and coworkers (5) and all other constants from Cohen, Dumond, Layton, and Rollet (6) with the subsequent revisions of Cohen and Dumond (7). All constants were converted to the chemical scale of atomic weights giving:

Gas constant R = 1.98731 cal. deg.⁻¹ mole⁻¹ $\alpha = hc/k = 1.43875$ cm. deg. Avogadro's No., $N = 6.02338 \times 10^{29}$ molecules mole⁻¹

Also, 1.000272 was used as a conversion factor from chemical to physical scale and 1 cal. = 4.1840 joules.

LITERATURE CITED

- Gerstenkorn, S., "Etude du Plutonium Par Spectroscope a Haute Resolution", Report No. 2238, Commissariat a l'Energie Atomique, Centre d'Etudes Nucleaires, Saclay, France, 1962.
- Mulford, R.N.R., "Thermodynamic Functions for Pure Plutonium", LA-2813, Los Alamos, Scientific Lab., Los Alamos, N. Mex., 1963.
 Rossini, F.D., "Chemical Thermodynamics," Wiley, New
- Rossini, F.D., "Chemical Thermodynamics," Wiley, New York, 1950.
- (4) Mayer, J.E., Mayer, M.G., "Statistical Mechanics," Wiley, New York, 1940.
- (5) Everling, F., Konig, L.A., Mattuch, J.H.E., Wapstra, A.H., Nucl. Phys. 18, 529, (1960).
- (6) Cohen, E.R., DuMond, J., Layton, T.W., Rollet, J.S., *Rev. Mod. Phys.* 27, 363, (1955).
- (7) Cohen, E.R., DuMond, J., Phys. Rev. Letters 1, 291, 383 (1958).

RECEIVED for review July 17, 1963. Accepted January 29, 1964. Work performed under the auspices of the U. S. Atomic Energy Commission.